Canonical Source Reconstruction for MEG
نویسندگان
چکیده
We describe a simple and efficient solution to the problem of reconstructing electromagnetic sources into a canonical or standard anatomical space. Its simplicity rests upon incorporating subject-specific anatomy into the forward model in a way that eschews the need for cortical surface extraction. The forward model starts with a canonical cortical mesh, defined in a standard stereotactic space. The mesh is warped, in a nonlinear fashion, to match the subject's anatomy. This warping is the inverse of the transformation derived from spatial normalization of the subject's structural MRI image, using fully automated procedures that have been established for other imaging modalities. Electromagnetic lead fields are computed using the warped mesh, in conjunction with a spherical head model (which does not rely on individual anatomy). The ensuing forward model is inverted using an empirical Bayesian scheme that we have described previously in several publications. Critically, because anatomical information enters the forward model, there is no need to spatially normalize the reconstructed source activity. In other words, each source, comprising the mesh, has a predetermined and unique anatomical attribution within standard stereotactic space. This enables the pooling of data from multiple subjects and the reporting of results in stereotactic coordinates. Furthermore, it allows the graceful fusion of fMRI and MEG data within the same anatomical framework.
منابع مشابه
Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system shoul...
متن کاملNUTMEG: Open Source Software for MEG/EEG Source Reconstruction
NUTMEG is an open-source MATLAB-based toolbox for MEG/EEG data. NUTMEG includes many options for source reconstruction, an easily navigable window for exploring source results, several options for source level connectivity computation, statistical evaluation of these source results, and conversion to and from formats of other toolboxes.
متن کاملSelecting forward models for MEG source-reconstruction using model-evidence
We investigated four key aspects of forward models for distributed solutions to the MEG inverse problem: 1) the nature of the cortical mesh constraining sources (derived from an individual's MRI, or inverse-normalised from a template mesh); 2) the use of single-sphere, overlapping spheres, or Boundary Element Model (BEM) head-models; 3) the density of the cortical mesh (3000 vs. 7000 vertices);...
متن کاملIdentifying fragments of natural speech from the listener's MEG signals.
It is a challenge for current signal analysis approaches to identify the electrophysiological brain signatures of continuous natural speech that the subject is listening to. To relate magnetoencephalographic (MEG) brain responses to the physical properties of such speech stimuli, we applied canonical correlation analysis (CCA) and a Bayesian mixture of CCA analyzers to extract MEG features rela...
متن کاملInfluence of Local and Remote White Matter Conductivity Anisotropy for a Thalamic Source on EEG/MEG Field and Return Current Computation
Inverse methods are used to reconstruct current sources in the human brain by means of Electroencephalography (EEG) and Magnetoencephalography (MEG) measurements of event related fields or epileptic seizures. There exists a persistent uncertainty regarding the influence of anisotropy of the white matter compartment on neural source reconstruction. In this paper, we study the sensitivity to anis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Intelligence and Neuroscience
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007